Copied to
clipboard

G = C42.697C23order 128 = 27

112nd non-split extension by C42 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.697C23, C4.1762+ 1+4, C4.1232- 1+4, D42(C4⋊C8), C4○D43C8, (C8×D4)⋊4C2, D48(C2×C8), Q82(C4⋊C8), Q87(C2×C8), (C8×Q8)⋊4C2, (C4×D4).36C4, C2.9(C23×C8), (C4×Q8).33C4, (C4×C8).32C22, C4.21(C22×C8), C4⋊C8.377C22, C42.233(C2×C4), (C2×C8).483C23, (C2×C4).685C24, C22.3(C22×C8), C42⋊C2.34C4, (C4×D4).364C22, C2.5(Q8○M4(2)), C22.45(C23×C4), (C22×C8).95C22, (C4×Q8).335C22, C42.12C424C2, C22⋊C8.246C22, C23.151(C22×C4), (C2×C42).792C22, (C22×C4).1286C23, C2.4(C23.33C23), C4⋊C8(C4×D4), C4⋊C4(C4⋊C8), C4⋊C8(C4×Q8), (C2×C4)⋊5(C2×C8), (C2×D4)(C4⋊C8), (C2×C4⋊C8)⋊19C2, C22⋊C8(C4⋊C8), C22⋊C4(C4⋊C8), C4⋊C4.252(C2×C4), (C4×C4○D4).18C2, (C2×C4○D4).28C4, (C2×D4).253(C2×C4), C22⋊C4.94(C2×C4), (C2×Q8).230(C2×C4), (C2×C4).500(C22×C4), (C22×C4).141(C2×C4), SmallGroup(128,1720)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C42.697C23
C1C2C4C2×C4C42C2×C42C4×C4○D4 — C42.697C23
C1C2 — C42.697C23
C1C2×C4 — C42.697C23
C1C2C2C2×C4 — C42.697C23

Generators and relations for C42.697C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, ac=ca, dad=a-1, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=a2c, ede=a2d >

Subgroups: 276 in 216 conjugacy classes, 174 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C42⋊C2, C4×D4, C4×Q8, C22×C8, C2×C4○D4, C2×C4⋊C8, C42.12C4, C8×D4, C8×Q8, C4×C4○D4, C42.697C23
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, C22×C4, C24, C22×C8, C23×C4, 2+ 1+4, 2- 1+4, C23.33C23, C23×C8, Q8○M4(2), C42.697C23

Smallest permutation representation of C42.697C23
On 64 points
Generators in S64
(1 47 55 63)(2 48 56 64)(3 41 49 57)(4 42 50 58)(5 43 51 59)(6 44 52 60)(7 45 53 61)(8 46 54 62)(9 26 38 18)(10 27 39 19)(11 28 40 20)(12 29 33 21)(13 30 34 22)(14 31 35 23)(15 32 36 24)(16 25 37 17)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)(25 37)(26 38)(27 39)(28 40)(29 33)(30 34)(31 35)(32 36)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)
(1 14)(2 36)(3 16)(4 38)(5 10)(6 40)(7 12)(8 34)(9 50)(11 52)(13 54)(15 56)(17 57)(18 42)(19 59)(20 44)(21 61)(22 46)(23 63)(24 48)(25 41)(26 58)(27 43)(28 60)(29 45)(30 62)(31 47)(32 64)(33 53)(35 55)(37 49)(39 51)

G:=sub<Sym(64)| (1,47,55,63)(2,48,56,64)(3,41,49,57)(4,42,50,58)(5,43,51,59)(6,44,52,60)(7,45,53,61)(8,46,54,62)(9,26,38,18)(10,27,39,19)(11,28,40,20)(12,29,33,21)(13,30,34,22)(14,31,35,23)(15,32,36,24)(16,25,37,17), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,14)(2,36)(3,16)(4,38)(5,10)(6,40)(7,12)(8,34)(9,50)(11,52)(13,54)(15,56)(17,57)(18,42)(19,59)(20,44)(21,61)(22,46)(23,63)(24,48)(25,41)(26,58)(27,43)(28,60)(29,45)(30,62)(31,47)(32,64)(33,53)(35,55)(37,49)(39,51)>;

G:=Group( (1,47,55,63)(2,48,56,64)(3,41,49,57)(4,42,50,58)(5,43,51,59)(6,44,52,60)(7,45,53,61)(8,46,54,62)(9,26,38,18)(10,27,39,19)(11,28,40,20)(12,29,33,21)(13,30,34,22)(14,31,35,23)(15,32,36,24)(16,25,37,17), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)(25,37)(26,38)(27,39)(28,40)(29,33)(30,34)(31,35)(32,36)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,14)(2,36)(3,16)(4,38)(5,10)(6,40)(7,12)(8,34)(9,50)(11,52)(13,54)(15,56)(17,57)(18,42)(19,59)(20,44)(21,61)(22,46)(23,63)(24,48)(25,41)(26,58)(27,43)(28,60)(29,45)(30,62)(31,47)(32,64)(33,53)(35,55)(37,49)(39,51) );

G=PermutationGroup([[(1,47,55,63),(2,48,56,64),(3,41,49,57),(4,42,50,58),(5,43,51,59),(6,44,52,60),(7,45,53,61),(8,46,54,62),(9,26,38,18),(10,27,39,19),(11,28,40,20),(12,29,33,21),(13,30,34,22),(14,31,35,23),(15,32,36,24),(16,25,37,17)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17),(25,37),(26,38),(27,39),(28,40),(29,33),(30,34),(31,35),(32,36),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64)], [(1,14),(2,36),(3,16),(4,38),(5,10),(6,40),(7,12),(8,34),(9,50),(11,52),(13,54),(15,56),(17,57),(18,42),(19,59),(20,44),(21,61),(22,46),(23,63),(24,48),(25,41),(26,58),(27,43),(28,60),(29,45),(30,62),(31,47),(32,64),(33,53),(35,55),(37,49),(39,51)]])

68 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4Z8A···8AF
order12222···244444···48···8
size11112···211112···22···2

68 irreducible representations

dim11111111111444
type+++++++-
imageC1C2C2C2C2C2C4C4C4C4C82+ 1+42- 1+4Q8○M4(2)
kernelC42.697C23C2×C4⋊C8C42.12C4C8×D4C8×Q8C4×C4○D4C42⋊C2C4×D4C4×Q8C2×C4○D4C4○D4C4C4C2
# reps133621662232112

Matrix representation of C42.697C23 in GL5(𝔽17)

160000
000160
000016
01000
00100
,
130000
016000
001600
000160
000016
,
90000
07100
011000
00071
000110
,
10000
00010
00001
01000
00100
,
10000
00001
000160
001600
01000

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,16,0,0,0,0,0,16,0,0],[13,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[9,0,0,0,0,0,7,1,0,0,0,1,10,0,0,0,0,0,7,1,0,0,0,1,10],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,16,0,0,0,16,0,0,0,1,0,0,0] >;

C42.697C23 in GAP, Magma, Sage, TeX

C_4^2._{697}C_2^3
% in TeX

G:=Group("C4^2.697C2^3");
// GroupNames label

G:=SmallGroup(128,1720);
// by ID

G=gap.SmallGroup(128,1720);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,219,675,80,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,a*c=c*a,d*a*d=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^2*c,e*d*e=a^2*d>;
// generators/relations

׿
×
𝔽